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Abstract: Based on the fact that the near horizon geometry of the extremal

Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai

class as the configuration whose near-horizon geometry is factorized as two dimensional

de Sitter space-time and some compact topology, that is Nariai geometry. We extend the

entropy function formalism to the case of the black holes of Nariai class. The conventional

entropy function (for the extremal black holes) is defined as Legendre transformation of

Lagrangian density, thus the ‘Routhian density’, over two dimensional anti-de Sitter. As for

the black holes of Nariai class, it is defined as minus ‘Routhian density’ over two dimensional

de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking

entropy. The higher order corrections are nontrivial only when the space-time dimension is

over four, that is, d > 4. There is a subtlety as regards the temperature of the black holes

of Nariai class. We show that in order to be consistent with the near horizon geometry,

the temperature should be non-vanishing despite the extremality of the black holes.
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1. Introduction

The entropy function formalism of Sen is a neat way to compute the entropy of an extremal

black hole even without the details of the solution [1, 2]. This method is especially very

useful when we are interested in the entropy contribution coming from the higher order

corrections to the Einstein-Hilbert action, as can be expected from string theory. The only

necessary information about an extremal black hole is its near horizon geometry that takes

the form, AdS2 × Kd−2, where AdS2 stands for two dimensional anti-de Sitter space-time

while Kd−2 is some (d− 2)-dimensional compact manifold. In this regard, the formulation

incorporates the attractor property of the black hole from the beginning [3 – 10]. (See

also ref. [11] and references therein.) The fact that the formalism successfully reproduces

Bekenstein-Hawking entropy suggests that the entropy is not sensitive to the asymptotic

behaviors of various fields involved.

This attractor behavior is mainly due to the long throat structure [12]. The fields

run through an infinite throat region to reach their attractor values and forget their initial

ones. This suggests that the entropy function formalism could also be applicable to the

cases with the near-horizon geometries other than AdS2×Kd−2: So far as there is a Freund-

Rubin type compactification [13], thereby making an infinitely long throat region near the

horizon, then the fields could show similar attractor behavior. On the other hand, the

near-horizon isometry does an important role in regulating the forms of most fields. The

more symmetries we have, the more concretely the forms of the fields will be determined.

As a simple extension of the entropy function formalism, one could conceive the cases

which entail, near their horizons, two dimensional de Sitter space-time (dS2), that is,

another familiar symmetric space. In this regard, we have two instant questions. First, is

there at all any black hole that possesses de Sitter space-time as the near-horizon geometry?
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In principle, this looks possible as long as the trace T ≡ T µ
µ of the energy-momentum

tensor of the matter fields and the cosmological constant Λd are appropriately chosen. By

taking trace over the Einstein equation one gets

R = 4Λd − 16πGdT, (1.1)

where Gd is d-dimensional Newton constant. For the geometry factorized into dS2×Kd−2,

the curvature scalar R is positive. Therefore one necessary condition for the specific fac-

torization of the the geometry would be Λd > 4πGdT .

The second question is a bit technical one. What would be the expression for the

entropy function of the black holes which contain dS2 near the horizons? The entropy

function of the conventional extremal black holes can be understood as the Routhian density

over two-dimensional anti-de Sitter space-time. If we just extrapolate the definition to the

cases we are interested in now, it might result in some negative entropy. For the geometry

without the angular momentum, the Einstein-Hilbert term will contribute to the entropy

S in the form

S ∼ − 1

16πGd

∫

K

dΩ (R − 2Λd) + · · ·

= − 1

16πGd

∫

K

dΩ (2Λd − 16πGdT ) + · · · . (1.2)

This is the value on shell and the dots stand for the contribution from other matter fields.

Hence it could be negative if T ≤ 0 and the cosmological constant is sufficiently large to

dominate over other contributions.

The aim of this paper is to answer the above two questions. We will show an explicit

example of the black holes with de Sitter near-horizon geometry. In the example, Λd > 0

and T = 0, therefore the necessary condition of Λd > 4πGdT is satisfied. Actually such

type of factorization of the near-horizon geometry into the form dS2 × Kd−2 is generic

whenever the metric function is negative near its double zero.

We will also see that the entropy function for the black holes with de Sitter near-

horizon geometry is defined as the minus Routhian density over the de Sitter part, that is,

S = −2πH. Despite the negative value of the Routhian H, the entropy is thus positive.

This paper is organized as follows. In the next section, we consider an extremal

Schwarzschild-de Sitter black hole in 4-dimensions. We discuss its global structure and some

of its thermodynamic properties. In section 3, we show that the near-horizon geometry of

the extremal Schwarzschild-de Sitter black hole is factorized into dS2×S2, that is into Nariai

geometry. Based on this observation, we define the black holes of Nariai class in general

d-dimensions as the black holes whose near-horizon geometries contain two dimensional

de Sitter space-time. In section 4, we derive the entropy function, à la Sen [1], starting

from Wald’s entropy formula [14 – 17]. Section 5 discusses the entropy contribution coming

from the higher derivative corrections to the Einstein-Hilbert action. In 4-dimensions,

Gauss-Bonnet term contributes a constant addition to the entropy. Section 6 discusses the

difference of Nariai geometry discussed in this paper from the ones appearing in the region

between the event horizon and the cosmological horizon of Schwarzschild-de Sitter black
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Figure 1: The extremal Schwarzschild-de Sitter metric has one degenerate horizon (at r = r0) and

another unphysical horizon (at r = −2r0). The metric function grr = f(r) is negative around its

double zero.

holes in the extremal limit. We also discuss the issue of the temperature raised specifically

in the black holes of Nariai class. We argue that the temperature of the black holes of

Nariai class is not zero despite their extremality.

2. Basics of extremal Schwarzschild-de Sitter black holes

In de Sitter background, Schwarzschild black holes can be extremal possessing degenerate

horizon. The geometry of Schwarzschild-de Sitter black holes is given as follows:

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

2,

f(r) = 1 − 2G4M

r
− r2

l2
, (2.1)

where G4 is 4-dimensional Newton’s constant and l is the length scale characterizing the

cosmological constant, that is,
1

l2
=

Λ4

3
. (2.2)

The zeros of the metric component, grr = f(r), signify the event horizons of a black

hole. The surface of constant r is null at the zeros of the metric function f(r). The presence

of the term concerning the cosmological constant in the metric function f(r), allows the

extremal case, despite the neutrality of the black hole. We can factorize the function f(r)

as follows:

f(r) = − 1

l2r
(r − r0)

2 (r + 2r0) . (2.3)
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Figure 2: Penrose diagram of an extremal Schwarzschild-de Sitter black hole. The geometry is

singular at r = 0.

See figure 1 for the form of the metric function. In this specification, the double zero is

related with the parameters M and l as

r3
0 = G4Ml2, (2.4)

r2
0 =

l2

3
, (2.5)

which implies r0 = 3G4M and the BPS like equation relating the mass parameter and the

cosmological constant;

27G2
4M

2 = l2. (2.6)

One thing to note is that the metric function f(r) is negative at every point r(> 0)

other than r0. This means that the coordinate r (0 ≤ r < ∞) is the temporal coordinate

in most region except the point r0, where it becomes the null coordinate. In the meantime,

the coordinate t (−∞ < t < ∞) is now one of the spatial coordinates. The geometry, being

dependent only on the temporal coordinate r, is neither static nor stationary.

Various properties concerning the global structure of the extremal Schwarzschild-de

Sitter black hole were worked out in ref. [18]. Its result can be summarized as the Penrose

diagram shown in figure 2. Generic observer going through the horizon at the instant

r = r0 = 3G4M is destined to the singularity at the future infinity r = 0.

The surface gravity (given by κ ≡ |f ′(r0)/2|) of this extremal black hole vanishes

because the metric function has a double zero at the degenerate horizon. However, one

should take this definition of the surface gravity with a grain of salt. The above definition

of the surface gravity can be recast in terms of a Killing vector tµ = dxµ/dt as

κ2 = −1

2
tµ;νtµ;ν

∣

∣

∣

∣

r=r0

, (2.7)

where tµ;ν stands for the covariant derivative of the vector gµρt
ρ with respect to the coordi-

nate xν . Though the Killing vector tµ is normalized in the asymptotically flat region in the
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limit of l → ∞, there is no asymptotically flat region in the generic de Sitter background.

One may argue that the surface gravity be defined with respect to an observer following

‘geodesic orbit’ 1 and who feels no acceleration [21]. In this scheme, one has to replace tµ

with

kµ =
1

√

−f(rg)
tµ (2.8)

that is normalized at r = rg on the geodesic orbit. The modified surface gravity at the

horizon r = rh satisfies

κ̃2 = ±
f ′2(r)

∣

∣

r=rh

4f(rg)
, (2.9)

where the upper sign applies to the region where f(r) > 0 while the lower sign is for

the case at hand. The problem with the extremal Schwarzchild-de Sitter black holes is

that rg = rh = r0 and therefore f(rg) = 0 because the geodesic orbit is determined by

f ′(rg) = 0. One way out for the case at hand would be to define it as

κ̃2 = ± lim
r→r0

f ′2(r)

4f(r)
= ±f ′′(r0)

2
, (2.10)

which results in κ̃2 = 3/l2 for the extremal Schwarzschild-de Sitter black hole. Zero surface

gravity is the result obtained by extrapolating the surface gravity defined in the asymp-

totically flat space-time.

Bekenstein-Hawking entropy of the black hole can be read from r2
0 as

S =
4πr2

0

4G4
=

πl2

3G4
= 9πG4M

2. (2.11)

3. Black holes of Nariai class

Since Nariai first found a cosmological solution of the type dS2×S2 (thus named as Nariai

geometry) in four dimensional de Sitter background [19], Ginsparg and Perry realized

that the same geometry appears between two horizons of Schwartzschild-de Sitter black

hole in the extremal limit of merging those two horizons, that is, the black hole horizon

and the cosmological horizon [20]. Further elaboration and its extension to the charged

Nariai geometry were made by Bousso and Hawking [21]. See also Refs. [22 – 25] for other

extensions of Nariai geometry.

In this paper, we will consider a different case and see below that Nariai solution

appears also as the geometry near the region trapped by two merged horizons. In other

words, it appears as the near horizon geometry (the geometry near the time r = r0) of the

extremal Schwarzschild-de Sitter black holes.

It is convenient to introduce the following near-horizon coordinates;

τ =
r − r0

ǫ
, x = ǫ t, (ǫ ≪ 1) (3.1)

1the geodesic line on which the Killing vector t
µ is tangential
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in terms of which the metric of (2.1) becomes factorized as dS2×S2, that is, two-dimensional

de Sitter space-time and a two-dimensional sphere;

ds2 = − l2

3τ2
dτ2 +

3τ2

l2
dx2 + r2

0dΩ2
2. (3.2)

The coordinate τ ranges from −∞ to ∞ and its positive value corresponds to a point

exterior to the degenerate horizon. Both dS2 and S2 are of the same size r0 = l/
√

3, where

l is the size of the embedding (3 + 1)-dimensional de Sitter background. This specific

geometry coincides with the one found by Nariai. In the near horizon region, the spatial

section of the geometry has the topology of a hyper-cylinder, that is, R×S2. Especially

one cannot see the black hole singularity in a finite time τ > −∞(r = 0) and has only the

accelerating horizon waiting for her at the time τ = 0 (r = r0).

One can relate the above near-horizon coordinates (τ, x) with the conventional planar

coordinates by the relations;

τ =
l√
3
e−ξ, x =

l√
3
y (0 < τ < ∞)

τ = − l√
3
eλ, x =

l√
3
y (−∞ < τ < 0). (3.3)

Then the geometry is described by

3

l2
ds2 =











−dξ2 + e−2ξdy2 (τ > 0)

−dλ2 + e2λdy2 (τ < 0).

(3.4)

Figure 3 shows the corresponding Penrose diagrams. The horizon is at the time ξ = ∞
and λ = −∞.

Based on this simple observation about the near-horizon Nariai geometry of the ex-

tremal Schwarzschild-de Sitter black holes, we set up the following ansatz for the black

hole of Nariai class in d-dimensions. It is the black hole whose near-horizon geometry is

factorized as 2-dimensional de Sitter space-time and a (d − 2)-dimensional sphere;

ds2 = v1

(

−dτ2

τ2
+ τ2dx2

)

+ v2 dΩ2
d−2. (3.5)

Being the symmetric spaces, de Sitter space-time and the sphere have the simple forms of

the curvature tensor;

Rαβγδ =
1

v1
(gαγgβδ − gαδgβγ) , Rµνρσ =

1

v2
(gµρgνσ − gµσgνρ) . (3.6)

There might be other fields like scalars and various form fields. The only thing con-

straining these fields is that they respect the isometry group SO(2, 1)×SO(d− 1). In other

words, the fields should be Lie invariant with respect to Killing vectors concerning the

isometry;

φi = ui

F j
e = ej dτ ∧ dx, F i

m =
pj

Vol(Sd−2)
dΩd−2. (3.7)
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ξ = −∞

ξ
=

∞

λ = ∞

λ
=

−
∞

y
=

∞

y
=

−
∞

I
−

I+

Figure 3: The near-horizon region (left) can be expanded to describe 2-dimensional de Sitter

space-time (right). Every point in the right diagram corresponds to a two sphere of constant

radius r0 = l/
√

3 even at the horizon ξ = ∞ and λ = −∞. This feature is distinct from that of

4-dimensional de Sitter.

We have to note that the factor SO(2, 1) in the isometry group is (1 + 1)-dimensional

de Sitter group and is not to be confused with (1 + 1)-dimensional anti-de Sitter group,

that is, SO(1, 2). These two groups are defined as the groups which leave the hypersurface

satisfying x2 ± y2 − z2 = ±1 with the upper signature for de Sitter and the lower one

for anti-de Sitter. There is no mathematical difference but there is physical distinction

between them. (1+1)-dimensional de Sitter space-time is the hyper-surface embedded into

(2 + 1)-dimensional space-time while (1 + 1)-dimensional anti-de Sitter space-time hyper-

surface is embedded into (1+ 2)-dimensional space-time that has one spatial direction and

two temporal directions.

4. The entropy function

In this section, we develop the entropy function formalism for the black holes of Nariai class.

The entropy function as was defined in ref. [1] is nothing but Wald’s entropy formula [14 –

17],

SBH = −8π

∫

horizon
dθdϕ

δS
δRxτxτ

√−gττgxx (4.1)

applied to the spherically symmetric extremal black holes. The result is that the entropy

function is ‘Routhian density’ over two dimensional anti-de Sitter space-time. Regarding

the black holes of Nariai class, we have to modify the definition of the entropy function as

– 7 –
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minus ‘Routhian density’ over two dimensional de Sitter space-time. Below, we just follow

the procedure of ref. [1], that will lead us to this conclusion.

As for those field configurations compatible with the near-horizon isometry, the action

S is just an algebraic polynomials of those field strengths (without any derivative involved).

The functional derivative in eq. (4.1) becomes simplified as the ordinary derivative;

δS
δRxτxτ

=
∂L

∂Rxτxτ

√−g (4.2)

resulting in

SBH = 8πA
∂L

∂Rxτxτ
gττgxx = −8πA

∂L
∂Rxτxτ

v2
1 . (4.3)

Here, A stands for the area of the horizon.

On the other hand, the above entropy can be written in terms of Lagrangian density

over two dimensional de Sitter space-time;

L(~e, ~p, ~u,~v) =

∫

Sd−1
dΩd−1

√−gL (4.4)

Following the prescription of ref. [1], we multiply a parameter λ on every occurrence of the

curvature tensor Rαβγδ, in other words, we replace the curvature tensor with λRαβγδ, to

define the function Lλ(~e, ~p, ~u,~v). Then it is easy to see that

∂Lλ

∂λ

∣

∣

∣

∣

λ=1

=

∫

Sd−1
dΩd−1

√−g
(

−2v2
1R
) ∂L

∂Rxτxτ

= −4v2
1A

∂L
∂Rxτxτ

. (4.5)

The difference from the conventional extremal case lies in the expression for the curvature

scalar R used in the second line. As for Nariai case, we use R = 2/v1 of de Sitter rather

than R = −2/v1 of anti-de Sitter. Therefore we can represent the entropy of (4.3) as

SBH = 2π
∂Lλ

∂λ

∣

∣

∣

∣

λ=1

. (4.6)

Note that the case of the conventional extremal black holes comes with the opposite sign

of the value on the right.

The remaining procedure of rewriting the right hand side as ‘Routhian density’ can

be followed after ref. [1]. We just summarize here a few key steps developed there. The

partial derivative of Lλ with respect to λ is related to other derivatives of the same function

Lλ with respect to the fields ~u, ~v, ~e, ~p. We have invariance of the Lagrangian density

under reparametrization of x and τ coordinates. As for the curvature, every factor of

the Riemann tensor component, Rxτxτ should appear as the combination λgxxgττRxτxτ =

λv−1
1 . As for the gauge field, every factor of the electric field F i

xτ should appear as the

combination
√−gxxgττF i

xτ = eiv−1
1 . The magnetic field Fm and the scalar field φi do not

have any v1 factors. There is no factor which comes from the covariant derivatives of the the

aforementioned fields. The remaining factor comes from the overall multiplicative volume,
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√
−detg which is proportional to v1. So these make it possible to specify the function Lλ

in the following form,

Lλ(~e, ~p, ~u,~v) = v1 g(~ev−1
1 , ~p, ~u, λv−1

1 , v2). (4.7)

Now it is easy to see that

v1
∂Lλ

∂v1
= Lλ − ~e · ∂Lλ

∂~e
− λ

∂Lλ

∂λ
. (4.8)

Since the left hand side vanishes on shell, the entropy (4.6) of the extremal black hole

solution will be

SBH = 2π

(

L − ~e · ∂L

∂~e

)

≡ −2πH, (4.9)

where H could be understood as the ‘Routhian density’ over two dimensional de Sitter

space-time.

We verify the above result by applying it to 4-dimensional charged black holes of Nariai

class. Let us first consider the standard Einstein gravity coupled with the gauge fields in

the presence of the positive cosmological constant in d-dimensions;

S =

∫

ddx
√−g

[

1

16πGd
(R − 2Λd) −

1

4
|F (2)

e |2 − 1

2 · (d − 2)!
|F (d−2)

m |2
]

. (4.10)

The ansätze (3.5) and (3.7) specify Lagrangian density (over 2-dimensional de Sitter) into

the form

L =

∫

dΩd−2
√−gL (4.11)

= Vol(Sd−2)v1v
d−2

2

2

{

1

16πGd

(

2

v1
+

2

v2
− 2Λd

)

+
1

2

(

e2

v2
1

− p2

Vol2(Sd−2)vd−2
2

)}

.

The only difference of the above result from that of the extremal case is the plus sign of

the term 2/v1.

The ‘Routhian density’ H will be expressed, in terms of the canonical conjugate mo-

menta,

~q =
∂L

∂~e
=

~e

v1
v

d−2

2

2 Vol(Sd−2), (4.12)

as

H = ~q · ~e − L =
v1

(

|~q|2 + |~p|2
)

2v
d−2

2

2 Vol(Sd−2)
− Vol(Sd−2)

8πGd

(

v
d−2

2

2 + v1v
d−4

2

2 − Λdv1v
d−2

2

2

)

. (4.13)

In 4-dimensions, the function H becomes maximal at

v1 =
4πv2

2

4πv2
2Λ4 − G4 (p2 + q2)

,

v2 =
π +

√

π2 − G4 (p2 + q2)πΛ4

2πΛ4
, (4.14)
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with the value

Hmax = −π +
√

π2 − G4 (p2 + q2)πΛ4

4πG4Λ4
. (4.15)

Though the value Hmax is negative, the entropy, as is obtained in (4.9), is positive;

SBH = −2πHmax =
π +

√

π2 − G4 (p2 + q2) πΛ4

2G4Λ4
. (4.16)

This coincides with the horizon area divided by 4G4, if we set

(p2 + q2) = 4πG4Q
2. (4.17)

A 4-dimensional extremal Reissner-Nordström-de Sitter black hole is characterized by

the metric function

f(r) = − 1

l2r2
(r − r0)

2 (r − rc) (r + (2r0 + rc))

= 1 − 2G4M

r
+

G2
4Q

2

r2
− r2

l2
. (4.18)

There are two possibilities of extremal cases, of which we are now interested in the case

of r0 > rc, that is when the double zero r0 is larger than the simple zero rc. The case

corresponds to the charged black hole of Nariai class.2 In its near-horizon, the geometry

looks like a charged Nariai. The charged Nariai also appears as the geometry in the region

between r0 and rc in the extremal limit [21, 22].

Figure 4 illustrates the situation. Bekenstein-Hawking entropy, that is, the horizon

area divided by 4G4 and is given by

S =
πl2

6G4

(

1 +

√

1 − 12

l2
G2

4Q
2

)

. (4.19)

Therefore we see that SBH = S.

5. Gauss-Bonnet corrections

Let us consider Gauss-Bonnet corrections to the entropy function. With the coefficient α

carrying the dimension of the length squared, Gauss-Bonnet term leads to the corrections

in the d-dimensional action as

△S =
α

16πGd

∫

ddx
√−g

(

RMNPQRMNPQ − 4RMNRMN + R2
)

. (5.1)

From the curvature components (3.6), we obtain

Rαβ =
1

v1
gαβ , Rµν =

d − 3

v2
gµν ,

R =
2

v1
+

(d − 2)(d − 3)

v2
. (5.2)

2The other case of rc > r0 corresponds to the charged extremal black hole in de Sitter background. See

ref. [8] for its detail.
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Figure 4: The metric function f(r) of 4-dimensional extremal Reissner-Nordström black hole has

a double zero r0 and a simple zero rc. Only the case of r0 > rc corresponds to the black hole of

Nariai class. The other case of rc > r0 is called a cold black hole and was discussed in ref. [8].

Inserting these results into eq. (5.1), we get the following Lagrangian density over dS2;

△L =
α

16πGd
Vol(Sd−2)v1v

d−2

2

2

(

1

v2
2

(d − 4) (d − 5) +
4

v1v2

)

(d − 2) (d − 3) . (5.3)

Compared to the case of adS2, the second term comes with the opposite sign.

The term gives a non-trivial result for d ≥ 5. In fact, in d = 4, it leads to the following

corrections to the entropy function

△S = −2π△H =
4πα

G4
. (5.4)

This contribution looks bizarre because it can be negative depending on the sign of α.

However, one should notice that the constant contribution is not concerned with any char-

acteristic of the black hole. In fact, α is just the coefficient of Gauss-Bonnet term. Every

black holes of Nariai class in the same theory will have this common constant contribution

to the entropy. A reasonable interpretation is to view the entropy in the relative sense,

which will trivialize the constant contribution. The same situation happens in the cold

black holes, in which the double zero of the metric function is less than the simple zero [8].

6. Discussions

In this section, we conclude the paper by laying out two comments on the properties of

our near-horizon Nariai geometry. First, we will explain how this near-horizon geometry is

different from the one found in refs. [20, 21]. Second, we consider an issue concerning the
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temperature of the black holes of Nariai class and suggest a way to resolve it. We argue

that it should be non-zero despite the extremality of the black holes.

As was noted earlier in this paper, Nariai geometry appears also in the region between

two horizons of a Schwarzschild-de Sitter black hole in the extremal limit [20, 21]. However,

it is different from the one we discussed in this paper. Though both geometries are locally

the same, their global structures are different. They cover different portion of de Sitter

space-time. The geometry discussed in the afore mentioned papers is the Euclidean version

of Nariai geometry and corresponds to the following metric of the Lorentzian geometry:

ds2 =
l2

3

(

− sin2 χdt2 + dχ2 + dΩ2
2

)

. (6.1)

It has two different horizons; the black horizon at χ = π and the cosmological horizon at

χ = 0. Let us restrict our consideration to the two-dimensional de Sitter part. This static

geometry does not cover the whole de Sitter space-time. One can relate the metric with

more familiar form written in the conventional static coordinates using the relation

r0t = ζ, sinχ =

√

1 − r2

r2
0

, (with r2
0 =

l2

3
) (6.2)

as

ds2 = −
(

1 − r2

r2
0

)

dζ2 +

(

1 − r2

r2
0

)−1

dr2 + dΩ2
2. (6.3)

This latter form of the metric describes only one quarter of de Sitter space-time. However,

the relation (6.2) is a two-to-one mapping, the form of the metric (6.1) therefore covers

another twin partner. The situation is illustrated in figure 5.

Meanwhile the Nariai geometry discussed in this paper involves only one horizon and

the metric (3.4) written in the planar coordinates is time dependent and either coordinate

patch (ξ, y) or (λ, y) covers half of the whole de Sitter space-time.

There is a temperature issue involved in the near horizon geometry of the black holes

of Nariai class. The surface gravity read from the formula κ = |f ′(r0)/2| gives a null result

for them because they are extremal in the sense that the event horizon coincides with the

cosmological horizon. On the other hand, the observer living near the horizon of the black

hole will definitely feel the temperature of two dimensional de Sitter space-time. It will be

given by

T =
κ

2π
=

1

2πldS2

, (6.4)

where ldS2
is the size of two-dimensional de Sitter space-time.3 In the extremal

Schwarzschild-de Sitter black hole, ldS2
= r0 = l/

√
3 where l is the size of four-dimensional

de Sitter space-time. In order to cure this discrepancy, one has to use the Killing vector

of an observer following the geodesic line in computing the surface gravity [21]. Indeed

the conventionally used Killing vector of the asymptotic observer does not make sense be-

cause there is no spatially asymptotic region in de Sitter background. However we still

3The notation, T , of the temperature should not be confused with the one used in the earlier section for

the trace of the energy-momentum tensor.
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χ
=

0

χ
=

π

χ
=

π2

χ
=

0

χ
=

π

Figure 5: Penrose diagram of the Nariai geometry between the black hole horizon (blue line at

χ = π) and the cosmological horizon (red line at χ = 0) of the Schwarzschild-de Sitter black hole

in the extremal limit, where the geometry is symmetric under exchange of χ ↔ π − χ.

have a technical difficulty in applying the modified surface gravity (2.9) in computing the

temperature

T̃ =
κ̃

2π
=

|f ′(rh)|
4π
√

−f(rg)
(6.5)

of a black hole of Nariai class because at least one of the positions of the geodesic orbit

is rg = r0 that makes f(rg) = 0. Since the position of the horizon is also at rh = r0, we

suggest the following limit value as the temperature of the black holes of Nariai class:

T̄ = lim
r→r0

|f ′(r)|
4π
√

−f(r)
=

1

2π

√

−f ′′(r0)

2
. (6.6)

Indeed for the extremal Schwarzschild-de Sitter black hole, it gives T̄ = 1/2πl2 that is

nothing but the temperature (6.4).

In the following, we will give more general argument that the above definition accords

with the temperature read from the near horizon Nariai geometry. For general black holes

of Nariai class, the metric function f(r) can be expanded near the generate horizon in the

near-horizon coordinate ǫτ = r − r0 as

f(r) =
f ′′(r0)

2
ρ2ǫ2 + O(ǫ3) (6.7)

and its value is mostly negative around the horizon. Therefore the near-horizon geometry

takes the form of Nariai type:

ds2 ≃ −1

2
f ′′(r0)τ

2x2 +
2

f ′′(r0)

dτ2

τ2
+ r2

0dΩ2
d−2 (6.8)
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where was used the rescaled coordinate x = ǫt. Since the value of f(r) is mostly negative

around the degenerate horizon r = r0, its second derive is negative at r = r0, that is,

f ′′(r0) < 0. The size of two dimensional de Sitter space-time is

l2dS2
= − 2

f ′′(r0)
. (6.9)

The temperature of two dimensional de Sitter space-time is given by

T =
1

2πldS2

=
1

2π

√

−f ′′(r0)

2
. (6.10)

This temperature read from the near horizon Nariai geometry is coincident with the tem-

perature T̄ defined in (6.6).

Temperature issue also arises in the extremal black holes discussed in ref. [8]. For

example, the four-dimensional extremal Reissner-Nordström-de Sitter black hole, though

it has the same metric function f(r) as in eq. (4.18), has the degenerate horizon r0 that is

smaller than rc. In the region between r0 and rc, there are two geodesic orbits to which

the Killing vector dxµ/dt is tangential; one is at r0 and the other is at a point rg(6= r0)

inside the region. The temperature T̄ measured by an observer at r = r0 takes the same

form as in (6.6), but without the minus sign inside the square root because f ′′(r0) > 0 in

the case. The result for the four-dimensional Reissner-Nordström-de Sitter black hole is

T̄ =
1

2πlr0

√

±
(

l2 − 6r2
0

)

=
1

2G2
4Q

2

(

√

1 − 12

l2
G2

4Q
2 ±

(

1 − 12

l2
G2

4Q
2

)

)

, (6.11)

where the upper sign is for the extremal case and the lower one is for the case of Nariai

class. The details about the expression for r0 in terms of the charge Q can be found in

ref. [8]. On the other hand, the temperature T̃ measured by an observer at rg is zero

because f ′(r0) = 0. Regarding the extremal black holes in de Sitter background, one

has to use this temperature T̃ rather than the one T̄ . The vanishing temperature T̃ of

the extremal black hole is consistent with its near horizon AdS2 and with the geometry

obtained in l → ∞ limit.

Acknowledgments

We thank Yong-Wan Kim, Yun Soo Myung, and Young-Jai Park for stimulating discus-

sions on Nariai geometry. This work was supported by the SRC program of KOSEF

through CQUeST with grant number R11-2005-021. It was also supported by the Korea

Research Foundation Grant funded by the Korean Government(MOEHRD) (KRF-2007-

314-C00056).

References

[1] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity,

JHEP 09 (2005) 038 [hep-th/0506177].

– 14 –

http://jhep.sissa.it/stdsearch?paper=09%282005%29038
http://arxiv.org/abs/hep-th/0506177


J
H
E
P
0
3
(
2
0
0
8
)
0
2
7

[2] A. Sen, Entropy function for heterotic black holes, JHEP 03 (2006) 008 [hep-th/0508042].

[3] M. Alishahiha and H. Ebrahim, New attractor, entropy function and black hole partition

function, JHEP 11 (2006) 017 [hep-th/0605279].

[4] A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without

supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143].

[5] G.L. Cardoso, B. de Wit and S. Mahapatra, Black hole entropy functions and attractor

equations, JHEP 03 (2007) 085 [hep-th/0612225].

[6] M.R. Garousi and A. Ghodsi, On attractor mechanism and entropy function for non-extremal

black holes/branes, JHEP 05 (2007) 043 [hep-th/0703260].

[7] R.-G. Cai and L.-M. Cao, On the entropy function and the attractor mechanism for

spherically symmetric extremal black holes, Phys. Rev. D 76 (2007) 064010

[arXiv:0704.1239].

[8] J.-H. Cho and S. Nam, Non-supersymmetric attractor with the cosmological constant, JHEP

07 (2007) 011 [arXiv:0705.2892].

[9] D. Astefanesei and H. Yavartanoo, Stationary black holes and attractor mechanism, Nucl.

Phys. B 794 (2008) 13 [arXiv:0706.1847].

[10] Y.S. Myung, Y.-W. Kim and Y.-J. Park, New attractor mechanism for spherically symmetric

extremal black holes, Phys. Rev. D 76 (2007) 104045 [arXiv:0707.1933].

[11] A. Sen, Black hole entropy function, attractors and precision counting of microstates,

arXiv:0708.1270.

[12] R. Kallosh, N. Sivanandam and M. Soroush, The non-BPS black hole attractor equation,

JHEP 03 (2006) 060 [hep-th/0602005].

[13] P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980)

233.

[14] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427

[gr-qc/9307038].

[15] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587

[gr-qc/9312023].

[16] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028].

[17] T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity,

gr-qc/9502009.

[18] J. Podolsky, The structure of the extreme Schwarzschild-de Sitter space-time, Gen. Rel. Grav.

31 (1999) 1703 [gr-qc/9910029].

[19] H. Nariai On a new cosmological solution of Einstein’s field equations of gravitation, Gen.

Rel. Grav. 31 (1999) 963.

[20] P.H. Ginsparg and M.J. Perry, Semiclassical perdurance of de Sitter space, Nucl. Phys. B

222 (1983) 245.

[21] R. Bousso and S.W. Hawking, Pair creation of black holes during inflation, Phys. Rev. D 54

(1996) 6312 [gr-qc/9606052].

– 15 –

http://jhep.sissa.it/stdsearch?paper=03%282006%29008
http://arxiv.org/abs/hep-th/0508042
http://jhep.sissa.it/stdsearch?paper=11%282006%29017
http://arxiv.org/abs/hep-th/0605279
http://jhep.sissa.it/stdsearch?paper=01%282007%29096
http://arxiv.org/abs/hep-th/0611143
http://jhep.sissa.it/stdsearch?paper=03%282007%29085
http://arxiv.org/abs/hep-th/0612225
http://jhep.sissa.it/stdsearch?paper=05%282007%29043
http://arxiv.org/abs/hep-th/0703260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C064010
http://arxiv.org/abs/0704.1239
http://jhep.sissa.it/stdsearch?paper=07%282007%29011
http://jhep.sissa.it/stdsearch?paper=07%282007%29011
http://arxiv.org/abs/0705.2892
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB794%2C13
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB794%2C13
http://arxiv.org/abs/0706.1847
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C104045
http://arxiv.org/abs/0707.1933
http://arxiv.org/abs/0708.1270
http://jhep.sissa.it/stdsearch?paper=03%282006%29060
http://arxiv.org/abs/hep-th/0602005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB97%2C233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB97%2C233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3427
http://arxiv.org/abs/gr-qc/9307038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C6587
http://arxiv.org/abs/gr-qc/9312023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C846
http://arxiv.org/abs/gr-qc/9403028
http://arxiv.org/abs/gr-qc/9502009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C31%2C1703
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C31%2C1703
http://arxiv.org/abs/gr-qc/9910029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C31%2C963
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C31%2C963
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB222%2C245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB222%2C245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C6312
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C6312
http://arxiv.org/abs/gr-qc/9606052


J
H
E
P
0
3
(
2
0
0
8
)
0
2
7

[22] R. Bousso, Charged Nariai black holes with a dilaton, Phys. Rev. D 55 (1997) 3614

[gr-qc/9608053].

[23] O.J.C. Dias and J.P.S. Lemos, The extremal limits of the C-metric: Nariai, Bertotti-Robinson

and anti-Nariai C-metrics, Phys. Rev. D 68 (2003) 104010 [hep-th/0306194].

[24] V. Cardoso, O.J.C. Dias and J.P.S. Lemos, Nariai, Bertotti-Robinson and anti-Nariai

solutions in higher dimensions, Phys. Rev. D 70 (2004) 024002 [hep-th/0401192].

[25] P. Diaz and A. Segui, Generalized Nariai solutions for Yang-type monopoles, Phys. Rev. D

76 (2007) 064033 [arXiv:0704.0366].

– 16 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C3614
http://arxiv.org/abs/gr-qc/9608053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C104010
http://arxiv.org/abs/hep-th/0306194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C024002
http://arxiv.org/abs/hep-th/0401192
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C064033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C064033
http://arxiv.org/abs/0704.0366

